

## HL-003-010302

Seat No.

## M. Sc. (Sem. III) (CBCS) Examination

May / June - 2017

## **Inorganic Chemistry**

(C(I)-302 : Symmetry and Group Theory)

Faculty Code: 003 Subject Code: 010302

Time :  $2\frac{1}{2}$  Hours] [Total Marks : 70

## **Instructions:**

- (1) All questions are compulsory.
- (2) All questions carry equal marks.
- 1 Answer the following: (any seven)

14

- (a) Give the point group of given molecule.
  - (A) Cr(Co)6
- (B) Ferrocene
- (C) Cis-PtCl<sub>2</sub>Br<sub>2</sub>
- (D) Benzene
- (b) Explain Center of Symmetry.
- (c) Explain the use of identity operation in Molecular Symmetry.
- (d) Give the example of following point group:
  - (A) C<sub>s</sub>

(B)  $D_{3h}$ 

(C) T<sub>d</sub>

- (D)  $C_{4v}$
- (e) Discuss addition of Matrices with suitable example.
- (f) Explain horizontal plane  $\sigma_h$ .
- (g) Explain molecules which are highly symmetric.
- (h) Give Reduction formula to find out the number irreducible representation.

1

(i) Give some important properties of the group.

| 2    | Answer the following: (any two) |                                                                                                                                        | <b>14</b> |
|------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------|
|      | (a)                             | Construct the character table for $C_{3v}$ point group.                                                                                |           |
|      | (b)                             | Explain different types of matrices.                                                                                                   |           |
|      | (c)                             | Using character table find out the number of irreducible                                                                               |           |
|      |                                 | representation $(\Gamma_R)$ for $C_{3v}$ point group.                                                                                  |           |
|      |                                 | $\Gamma_{\sigma} = 4$ 1 0                                                                                                              |           |
| 3    | Ans                             | ower the following: (any two)                                                                                                          | 14        |
|      | (a)                             | Find out the number of vibrations in $POCl_3$ using character table and predict the Geometry and Hybridization using character table : |           |
|      |                                 | $egin{array}{c cccc} C_{3v} & & & & & \\ \hline \Gamma_{3N} & 15 & 0 & 3 & & & \\ \hline \end{array}$                                  |           |
|      | (b)                             | Obtain matrix representation of symmetry elements present in Water molecule.                                                           |           |
|      | (c)                             | Using sine formula show that 'F' term splits in to $A_{2u}$ , $T_{1u}$ and $T_{2u}$ in Octahedral field.                               |           |
| 4    | Ans                             | wer the following:                                                                                                                     | 14        |
|      | (a)                             | Find out the number of IR and Raman active bands in ${\rm XeO_4}$ using character table :                                              |           |
|      |                                 | $egin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                   |           |
|      | (b)                             | Explain the method to determine point group of any molecule.                                                                           |           |
| 5 An |                                 | wer the following:                                                                                                                     | 14        |
|      | (a)                             | Derive Sine formula for splitting of orbital or energy levels in different symmetries.                                                 |           |
| _    | OR                              |                                                                                                                                        |           |
| 5    | Answer the following:           |                                                                                                                                        | 14        |
|      | (a)                             | Write note on Great Orthogonality theorem.                                                                                             |           |